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J .  Phys.: Condens. Matter 2 (1990) 6789-6800. Printed in the UK 

Theory of interacting Josephson junctions 
(Josephson lattices) 

V V Bryksin, A V Goltsev and S N Dorogovtsev 
Ioffe Physico-Technical Institute, 194021 Leningrad, USSR 

Received 27 September 1989 

Abstract. A theoretical approach is derived to describe a Josephson junction of complex 
form with self-crossings. Results of the approach are used to study properties of granular 
superconducting systems with Josephson junctions between grains (Josephson networks or 
lattices). We show that properties of Josephson lattices depend on the grain size (L ) .  If L is 
smaller than the Josephson length (a), then the lattices are described by the energy functional 
of the XY model in which internal magnetic fields are taken into account self-consistently. 
On the basis of the functional we find the low critical field (H,*,) and the pinning energy of 
vortices. We study also a case of high magnetic fields ( H  S H:,). In this case the lattices are 
also described by the X Y  model but the coupling strength between grains may depend 
strongly on H .  

1. Introduction 

A large number of experimental and theoretical papers have been devoted to Josephson 
networks with superconducting grains coupled by Josephson junctions (see, for example, 
NATO Workshop 1988, Clem 1988, and many others). Different types of Josephson 
networks may be fabricated using modern lithographic techniques. On the other hand, 
an extensive investigation of high- T, ceramic superconductors gives a further impetus 
to a more profound study of Josephson networks. Interaction between Josephson 
junctions has an important effect on properties of the networks. The interaction is 
mediated by magnetic fields and takes place either between junctions lying at a distance 
of the order of the London penetration depth A ,  or between crossed junctions. 

In this paper we develop a general theory of a Josephson junction that has a com- 
plicated form including self-crossings (section 2). In section 3 we apply the theory to 
describe systems of parallel Josephson junctions. Section 4 is devoted to an investigation 
of two crossed Josephson junctions. We consider rectangular Josephson lattices in terms 
of the effective medium (section 5 ) .  The assumptions used in sections 3 and 4 are 
discussed in the appendix, where we obtain an exact solution for the problem of magnetic 
field penetration in an isolated linear Josephson junction. In section 6 we point out that 
our approach may be generalised to study the interaction between Josephson junctions 
and Abrikosov vortices. 

It should be noted that we will study only Josephson networks that are uniform along 
the z axis. In this case the problem under consideration becomes two-dimensional in 
fact, and three-dimensional effects are ignored ((see, for example, papers of Dasgupta 
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Figure 1. The curve C represents a Josephson 
junction, that is a thin dielectric layer, for 
example, with a self-crossing. The variable 1 is a 
continuous variable along the curve C ;  and n, 
and n, are tangential and normal unit vectors, 
respectively. 

and Halperin (1981) and Bartholomew (1983), in which some of these 3D effects have 
been studied). 

2. Josephson junctions of complicated form 

Let us consider a Josephson junction that in the xy plane is represented by an arbitrary 
curve (for example see figure 1). Along the z axis the system under consideration is 
supposed to be uniform, The Josephson junction whose thickness is small compared to 
the London penetration depth A. cuts the superconductor into grains. We assume that 
inside the grains the superconducting order parameter does not depend on coordinates. 
Magnetic field obeys the following equations: 

rot H = (4n/c)j (1) 

where Go = ntic/e is the flux quantum andA is the vector potential. Substituting (2) into 
(1) we obtain the London equation 

AH - A - ~ H  = 0 (3) 
which is correct everywhere except on junction surfaces. Below, we will suppose that 
the magnetic field H is parallel to the z axis and depends only on the variables x and y ,  
i.e. H = (0, 0, H ( x ,  y ) ) .  In this case A is the two-dimensional Laplacian. 

Now we consider boundary conditions on the junction surface. Let H ( x , y )  be a 
continuous function whose normal derivative breaks on the junction surfaces. To satisfy 
the boundary condition we can introduce a ‘surface charge’ a(x, y )  distributed on the 
junction surface. In this case a solution of the two-dimensional equation (3) may be 
written in the form 

where r = ( x ,  y ) ,  Ko(x) is the modified Bessel function and rl is a radius vector of a point 
lon the junction (see figure 1). The integration in (4) is taken over the junction and 1 is 
a continuous variable along the junction. At each point 1 of the junction we define the 
normal unit vector nl and the tangential unit vector n, ([nl x n,] = n,, where n, is the 
unit vector along the z axis). Equation (4) does not take into account an external 



Theory of interacting Josephson junctions 6791 

boundary of the considered system. Let the magnetic field H ( x ,  y )  on the boundary be 
equal to an external magnetic field HO. Then determination of H ( x ,  y )  from equation 
(3) with this boundary condition is equivalent to determination of an electric potential 
in a metal, where the boundary condition may be taken into account by use of forces of 
the mirror reflection. If the boundary is flat then we obtain 

H ( r )  = H o  exp(-x/A) + I d l  a(rl) [ K O  frp) - - K o ( Y ) ]  ( 5 )  

where the boundary plane goes along the y axis and the superconductor occupies the 
region x 3 0. At a distance x % A the effect of the boundary is negligible and equation 
(5) comes to equation (4). 

To find a(rr) we determine from (1) the normal and tangential components of the 
currentj near the junction: 

(7)  
C C 

O ' , n , ) = - ( [ n ,  xn,] ,VH)= --(n,,VH). 4n 4n 

According to (7) at a point 1 the jump of the tangential component of the current is 

(8) 
C 

( j +  - j -  , n,) = - - (n, , VH+ - VH-) = tca(r,) .  4n 

In (8) the second equality is a consequence of (4). On the other hand, equation (2) gives 

where 

2 n  ve=v(V+ - q-) - - ( A +  - A - ) .  
$0 

Here q' and A' are values of Q, and A on the two sides of the junction (see figure 1) .  
From (8) and ( 9 )  it follows that o(1) = o(rr) is equal to 

$0 ae a(l) = -- 
~ J T ~ A ~  a i '  

Inserting ( 9 )  into (4) we obtain a relation between the phase difference 8 on the junction 
and the magnetic field H(r)  at a point r = ( x ,  y ) :  

The normal component of the current ( 6 )  through the junction is equal to the Josephson 
current ( j c  sin 0). Therefore using ( 6 )  and (11) we obtain 

where d2 = hc2/16njceA is the square of the Josephson length (Josephson 1965). 
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n+l 

n 

Figure 2. The system of parallel Josephson junc- 
tions (full lines); ann, is the distance from junction 
with index n to junction n'. 

Figure 3. The simplest system consisting of two 
Josephson junctions that cross each other (full 
lines). One junction is along the x axis and the 
other is along they axis. The rest of the volume is 
filled by a superconductor. 

Let us suppose that the curve that represents the junction satisfies the following 
topological conditions : (i) there are no breaks and self-crossings; (ii) the minimal radius 
of the space curvature of the curve is larger than A ;  (iii) if 1 lA - lB I + A for arbitrary 
points A and B lying on the junction, then ( r ,  - rB I + A also; and (iv) for 6 + A the 
function a O ( l ) / a l  changes slowly over a distance of the order of A.  In this case we can 
take ae(l'>/aZ' out of the integral (12) at 1 = 1'. Therefore we have 

sin e(l) = 62 d2e/ai2. (13) 
This is the well known sine-Gordon equation obtained by Ferrel and Prange (1963). 

In the next sections we will apply general equation (12) to study Josephson networks. 

3. Systems of parallel junctions 

Now we consider a system consisting of interacting Josephson junctions that are parallel 
to the x axis. In this case equation (12) takes the form 

de,,, (x') 
Ko(A-l[aznf + (X - x ' ) ~ ] ' / * )  (14) 

S 2  d 
s inO, (x )=- -x \dx '  X A ~ X  n' dx'  

where e&) is the phase difference on the junction with index n' and ann, is the distance 
along the y axis between junctions n and n' (figure 2). If dB,(x)/dx change slowly over 
a distance of the order of A ,  then equation (14) leads to 

-ann d 2  
sin e,, = S* exp(+) 2 ent (x). 

n' 

In terms of the nearest-neighbour approach, equation (15) comes to the equation 
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obtained by Volkov (1987). From equation (15) we can find the magnetic field pen- 
etration depth along the x axis. Let the superconducting system occupy the region x 2 0 
and ann# = In - n’ la. Using the linearisation sin 8, = 8, and supposing 8,(x = 0) = eo at 
all n. we obtain 

e&) = eo exp(-x/6*) 

where 

6* = G[~oth(a/2A)]”~ (16) 

is the effective penetration depth of the magnetic field. If a 9 A then the interaction 
between junctions is negligible and 6* = 6. In the contrary case a A the interaction 
leads to increasing 6 * (6 * = 6(2A/~)’ /~ 9 6). We can assume that, the larger 6 * , the 
smaller is the low critical magnetic field H,*,. 

4. Interception of junctions and boundary conditions for Josephson lattices 

Interception of Josephson junctions is an important case of interaction between 
junctions. First we discuss the interception of two linear junctions (figure 3). It is obvious 
that at distances larger than A from the interception of the junctions we can neglect the 
interaction between the junctions. In this case the phase difference 8(l)  satisfies equation 
(13), where I = x ,  y .  To find a boundary condition at the interception of the junctions 
we integrate equation (11) over a small area (S) that contains the interception. If the 
flux of magnetic field through the area tends to zero in the limit S + 0, then we obtain 

s+ lim 0 I d S d l E K o ( y )  a i  = O .  

Let us take into account the equality 

and substitute it into (17). Since the integral of the first term (AK,) is equal to zero, 
equation (17) takes the form 

(18) + = (93)  + ,9(4) 

where i = 1,2 ,3 ,4 ,  are limit values of 8(l) on rays with index i near the interception 
(see figure 3). For example, in accordance with figure 3 we have 8(x + +O), e(’) = 
8(y+ +O), = O(x+ -0)and8(4) = 8(y+ -0). Itisimportanttonotethatequation 
(18) is exact and allows a discontinuity of the function 8(l) at the interception. We can 
use relation (18) as the boundary condition for equation (13) if the function 8(l) changes 
slowly over a distance of the order of A from the interception. Although we cannot prove 
the suggestion exactly for the system considered above, in the appendix we give a proof 
of the suggestion in the related case of magnetic field penetration into a linear Josephson 
junction, 
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Figure 4. Full lines represent a rectangular 
Josephson lattice (one Josephson junction on 
each lattice bond; the rest of the volume is filled 
by a superconductor). Broken lines represent its 
dual lattice. 

Now we consider rectangular Josephson lattices (one junction on each bond of the 
2~ lattice). The relation (18) must be satisfied in each site with index (m, n) (see figure 
4) : 

e;?, + ec?, = 6gi  + e;?,. (19) 

The phase difference O ( l ) ,  1 = x ,  y ,  determined on each bond satisfies equation (12). Let 
us consider the bond between the sites (m, n)  and (m + 1, n). The related function O(x)  
is defined as 6;:','3"(x). A function 6 E $ + ' ( y )  is related to the bond between the sites 
(m, n)  and (m, n + 1). We can introduce the following representation: 

where and em(y) are continuous functions on the lattice and satisfy equation (12). 
The phases qmn are related to the dual lattice represented by the broken lines on figure 
4 (the site index (m, n)  of the dual lattice is also the index of the elementary plaquette) 
and may be considered as the phase of the order parameter in superconducting grains. 
It is easy to prove that the representation (20) satisfies the relation (19). Integrating 
equation (13) over the bonds around the elementry plaquette (m, n )  and using the 
continuity of the magnetic fieid H(1) on the bonds, one obtains an important relation: 

Yntl 

Y" 
1 dy{sin[qmn - q m - l , n  + e m ( Y > l +  sin[qmn - q m + l , n  - e m + l ( Y ) l ~  

+ /;+ldx(sin[qmn - q m , n + l +  e n + l ( X > l  

+ sin[qmn - P m , n - 1  - &n(x)J) = 0 (21) 

where Xm and Ym are the x and y components of the radius vector Rm of the site (m, n)  
of the basic lattice. 

Now we study rectangular Josephson lattices with lattice constants L,, L, % A .  On 
each bond at a distance from sites of the lattice, we can assume that the derivative 
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d O / d l  changes slowly over the scale A. (for a proof of the assumption, see the appendix). 
Therefore, in accordance with ( l l ) ,  the magnetic field H(1) is 

$0 ae(0 H(1) = --. 
4nil a i  

Below we will only consider solutions such that H(l)  changes slowly near lattice sites. In 
this case using the continuity of H(1) in each site (m,  n) of the basic lattice, we obtain the 
second condition for the functions e&) and 8,(y) at the site (m, n): 

According to equations (20), (22) and (12) the functions e&) and 8, (y )  satisfy the sine- 
Gordon equation (13). If an external boundary is fixed, then the set of equations 
(13), (20)-(23) describe completely the behaviour of the system under consideration. 
Different solutions of the set of equations have been found by us in previous papers 
(Bryksin et a1 1989a, b), where we have studied the dependence of the low critical field 
H,*, , the pinning energy of vortices and the penetration depth of magnetic fields on the 
ratio between L,, L, and S at L,, L, % A. 

5. Effective-medium approach 

In the present section we shall study rectangular Josephson lattices with the lattice 
constants L,and L, whose magnitudes are arbitrary compared toil. As above we suppose 
that H(rJ (r/ is the radius vector of a point on a lattice bond) changes slowly over the 
scale il. If a O / a l  changes slowly over this scale also, then equation (11) may be written 
as 

where 

Here the integration is taken over all lattice bonds. Let r/ lie on a bond that is parallel to 
the x axis. We can divide the integral (25) into two contributions from x and y bonds 
respectively: 

CE 

1 
P ( x )  = - 2 dx' Ko(il-'[(x - x ' ) ~  + (nL,)2]1/2) (,= --cc. 1-1 

CE 

dy' Ko(il-'[yf2 + (mL, - x ) ~ ] ' / ~ )  
m =  --CE 

L cosh[ ( L  - 2)/2A] 
2il sinh(LX/2il) * 

= coth + 
In (26) the function P ( x )  is determined in an interval 0 < x < L,. Then the function P ( x )  
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has to be continued periodically, that is P(x) = P(x + mL,). If r, lies on a y  bond then 
the function P(y) has the form (26) with substitutions L, ++ L, and x -y ( P ( y )  = 
P ( y  + nL,)). In spite of the assumption about a smal! change of the function ae/dlover 
the scale A ,  we can see from equations (24) and (26) that P ( q )  and consequently H(r,) 
does not change slowly over the scale. However, in two limit cases A B L,, L, and A < 
L,, L, this difficulty may be avoided. In the first case (A % L,, L,-the 'dense' lattice 
case) P(q)  is a periodic function with a small oscillation amplitude that at L, = L, = L 
is equal to [cosh(L/2A) - l]/sinh(L/2A) = L/4A G 1. In the second case (A 4 L,, L,- 
the 'rare' lattice case) the dependence of P(r,) on coordinates is important only in small 
regions with a size of order A near lattice sites. In these two limit cases P(q) may be 
substituted by its average value P: 

L 2A 
Px = - dx P(x)  coth + - 

2A L, 

- 1  L, 2A 
2A L,  

dy P( y) = coth - + -. 
Therefore, in the framework of the effective-medium approach, the phase difference 
O(1) obeys the following equation on each bond: 

6; = spfl2 

where 1 = x ,  y. It is easy to find that in the two limit cases considered above p, and a,* 
are isotropic (P, = py  = p, 6: = 6; = 6* = 6P1i2. For A % L,, Ly we have P = 
2A(L;' + L;') .  For A G L,, L, one obtains p = 1. If L, @ A and L, A then we have 
p = 2A/L,. For the contrary case L, G A and L, 9 A we have p = 2A/L,. However, 
equation (28) is incorrect when L, or L, is of order of A.  Nevertheless, we believe that 
the equation gives qualitatively correct results. 

In each lattice site the function e(/) and its derivative d O / a l  are connected by means 
of equations (19) and (23). Therefore, to describe a Josephson lattice we have to find a 
self-consistent solution of equation (28) on each bond and then to connect the solution 
by means of equations (19) and (23). This procedure has been done in our previous 
papers (Bryksin et a1 1989a, b) for the case A 4 L,, L, when E' = 1. Generalising the 
procedure for the case of an arbitrary ratio between A and L,, L,, we obtain the following 
free-energy functional: 

Here 

is the effective magnetic permeability of the Josephson lattice. The sum in (29) is taken 
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over sites of the dual lattice. The effective magnetic field h is related to the magnetic 
field H and ‘vector potential’ A = (A,, A,, 0) by means of the following equation: 

1 1 
hmn = PHmn =-(Ay.mn -Ay.m-l,n) --(Ax,mn -Ax.m.n-1) (31) 

L, L, 
which in the continuum limit takes the form h = rot A ,  where h = (0, 0, h). In cases when 
the phase 91 and the ‘vector potential’ A alter slowly from one site to another, the cos 
terms in (29) may be expanded in a row. Keeping only terms of the second order of 
magnitude in the continuum limit we have 

2n 1 
(%--Ay dY $0 1‘1 +-h2 8np 1 . (32) 

In the framework of a phenomenological approach, a similar effective free energy has 
been used to study properties of granular superconductors (Rosenblatt 1974, Clem and 
Kogan 1987, Sonin 1988). 

The functional (29) can be applied to the description of Josephson lattices if the 
magnetic field changes slowly along a bond. The condition does not take place when 
either L, or Ly is larger than 6 or of the same order as 6. In the previous papers (Bryksin 
et a1 1989a, b) we have shown that highly anisotropic Josephson lattices (either L, Q 
6 e L, or L, Q 6 Q L,) are described by the Frenkel-Kontorova model (Bak and Bohr 
1982). 

Let us discuss the penetration of a low magnetic field into Josephson lattices described 
by the functional (29). It is easy to find that for square lattices (L, = L, = L )  the effective 
penetration depth is equal to 

At A Q L Q 6 in accordance with (27) and (30) we have p = 4A/L and consequently 
I *  = 6 / f i  (Sonin 1988, Bryksin et a1 1989a, b). In the case L Q A one obtains p = 1 
and A *  = 6(212/L)1/2 S 6. In the general case according to the results of Sonin (1988) 
and Bryksin et a1 (1989a, b) the low critical magnetic field (H,*,) above which 
vortices arise is equal to 

$0 (In + constant . ) H;, =- 
4 n p P  L 

Let us compare H,*, and the low critical field H;?) of Abrikosov vortices: 

(34) 

where lj is the correlation length. For A ,  L < 6, taking into account (33), (34) and (39 ,  
we have 

that is Hi?) is much larger than H,*,. Vortices in a Josephson lattice are pinned to sites 
of the lattice. At A Q L Q 6 the energy of pinning is equal to 

(Lobb et a1 1983, Bryksin et a1 1989a, b). The result is also correct at A S L. 
E ,  = O.l(h/e) jcL (37) 
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Finally, we study the case of high external magnetic fields Ho (H,*1 Q H o  4 H i p ) )  
when the field H determined by (24) is approximately equal to Hoe The case A << L has 
been studied by us (Bryksin eta1 1989a, b). Here we generalise these results and consider 
the case A * L also. 

According to (24) where P(q)  is substituted by p the phase difference e(1) on each 
bond is a linear function of the coordinate 1 = x ,  y :  

In the case under consideration the energy functional may be chosen in the form 

(39) 
n 

F =  - - j c  1 dlcosO(1) 
2e bond bond 

where the sum is taken over all lattice bonds. Inserting (38) into (39) and then using the 
transformation (20) to the dual lattice, we can write the following energy functional of 
a square Josephson lattice in high magnetic fields: 

where the sum is taken over all sites of the dual lattice i = (m, n);  g is the unit vector of 
a nearest neighbour. The vector potential Ai,g is determined by 

Ai.g = ~ [ H o  x (Ri + Ri+g)l (41) 
where Ri is a radius vector of the site i. 

For L 9 A according to (27) we have p = 1. In this case the functional (40) shows 
that in the region of high magnetic fields C$~/AL < Ho Hi?) the coupling strength 
between superconducting grains depends strongly on Ho and is proportional to 
(Go/@) sin(2n@/Go), where @ = ALH, is half of the magnetic field flux through a 
bond (junction). 

For a lattice with L << A we have p = 4A/L. In this case the dependence of the 
coupling strength on Ho may arise only at H o  > G0/L2 9 Hi?). In the region H o  < 
Hip) the functional (40) takes the form 

It is this functional that is usually used to study Josephson lattices in magnetic fields. 
Let us give rough estimates of the critical field H:l. For typical high-T, super- 

conductors, the low critical field Hif) is of order lo2 Oe, A - 0.1 pm and the grain size 
L - 1 pm. The Josephson length varies from 1 to lo2 pm depending on the barrier 
thickness d .  Using (6) we obtain that H,*, lies in the range 10-10-3 Oe. These values 
of H,*, are in agreement with the data of Kwak et a1 (1988) and Mazaki et a1 (1987), for 
example, If L is smaller and 6 is larger, then Hzl may be lower. 

6.  Conclusions 

In the present paper we have applied a general description of a Josephson junction 
with complex form to investigate properties of Josephson lattices. Although we limit 
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ourselves to rectangular lattices, we think that the approach proposed above may also 
be applied to a disordered lattice. 

Above we have studied only stationary properties. However, it is evident that our 
approach may be generalised to study non-equilibrium phenomena. The first step in this 
direction has been done in our previous papers (Bryksin et al1989a, b), where we have 
considered oscillations of a vortex about a pinning centre. 

Since magnetic fields in superconducting grains are described by equation (3), our 
results are correct only for an external field Ho smaller than the low critical magnetic 
field H if) of Abrikosov vortices. At Ho > H if) Abrikosov vortices penetrate inside the 
grains. In this case we must put the sum of point sources of magnetic fields (that is 
Xi &,S(r - ri), where ri is the radius vector of the vortex centre) in the right-hand side 
of equation (3). A self-consistent solution of equations (1) and (2) and the modified 
equation (3) allows us to study the interaction between Abrikosov vortices and Joseph- 
son junctions. 

Appendix 

Let us consider magnetic field penetration in a semi-infinite ( x  2 0) linear Josephson 
junction. We will show that both magnetic field and phase difference 8 change slowly 
everywhere over the scale A including a region (0 s x s A) near the junction boundary. 

At low magnetic fields equation (12) may be linearised and takes the form 

c d H  
4njc dx 

e(x) = -- 

where H(x) is determined by equation (5). The function 8 ( x )  and 'surface charge' a(x) 
are related by equation (10). Inserting (10) and (Al) into (5) we have 

H(x) = zl d2 1o dx'  d 2 H  s [ K o ( $ )  x - x ' J  - KO($)] x + x ' /  + Ho e-xiA. 
0 

Now we define the function H(x) at negative x :  

H(x) = - H( - x ) .  

Then (A2) may be written as 

d2 d 2 H  x - x ' I  
H(x) = - 1 dx' KO(%) + sgn(x)Ho e-lXlIA. 

- E  

This equation may be easily solved by means of Fourier transformation. The solution of 
(A4) is 

At x > 0 in a plane of complex k, contributions to the integral (A5) are determined by 
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a pole at k = -iK/A, where 

and a cut along the imaginary axis from -i/A to +so. As a result of calculations, equation 
(A5) takes the form 

where = ~ ~ ( 1  - K ~ ) - ~ .  The first term in (A7) is the contribution of the pole. The 
second term is the contribution of the cut. The first term changes slowly over the scale 
A since at A/6 4 1 we have K = A/6. The second term decreases exponentially in a 
distance of the order of A from the boundary. However, because of the small multiplier 
A2/d2 4 1 the second term in (A7) is small at all x .  Therefore we can consider that at all 
x the magnetic field H ( x )  determined by (A7) changes slowly over the scale A.  The 
derivative dH/dx and O(x)  (see (Al)) also possess the same property. It is useful to 
note that at x < A the contribution of the second term to d2H/dx2 is of the same 
order of magnitude as the first term. Moreover, at x = 0 the derivative d2H/dx2 and 
consequently dB/dx are equal to zero. At x+  0 all high derivatives tend to infinity. 
However at distances x > A the function d 8/dx changes slowly again. The fact approves 
the use of equation (22). 

Note added in proof. After we had submitted this paper, two papers (Volkov 1989a, b) were published where 
for the system of parallel Josephson junctions the equation (14) was also obtained. 
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